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(Regular)Model Checking
Verify that a system satisfies a specification

{φ} P {ψ}precondition postcondition
program

Hoare Triple

Regular Model Checking :
— Programs : string-to-string programs
— Specifications : regular expressions

Continuous functions :
f−1(L) is regular whenever L is a regular lan-
guage

Regular Model Checking of Continuous Functions
φ =⇒ P−1(ψ)
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Program For-program FO-Int.
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FO+T
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Simple for programs 8 A. Lopez and R. Stefański

3 # "hello world" -> "olleh dlrow"
4 seen_space_top = False 1

5 # first we handle all words except of the final one
6 for i in input: 2

7 seen_space = False 3

8 if label(i) == ’ ’: 4

9 for j in reversed(input): 5

10 if j < i:
11 if label(j) == ’ ’:
12 seen_space = True
13 if not seen_space:
14 print(label(j)) 6

15 print(’ ’) 7

16

17 # then we handle the final word
18 for j in reversed(input):
19 if label(j) == ’ ’:
20 seen_space_top = True
21 if not seen_space_top:
22 print(label(j))

We disallow constructing intermediate word-values, there are no variables
of type Listn for any n, and it is not possible to define functions (other than
the main function). As a consequence, the for-loops can only iterate over the
positions of the input word as in 1 and 2 . The character at a given position
can be accessed using the keyword label, whether when testing it ( 5 ) or when
printing it in ( 6 ). As we are considering a restriction of for-programs, we only
allow comparing labels to constant characters (R. III). Finally, we only allow
introducing boolean variables at the top of the program ( 1 ) or at the beginning
of a for loop ( 3 ).

3.3 First-Order String-To-String Transductions

First-order string-to-string interpretations forms an other model that defines
functions D⇤

! D
⇤. It is based on the first-order logic on words (FO), the syntax

of which we recall in Figure 3. To evaluate such a formula ' on a word w 2 D
⇤

we perform the quantifications over the positions in w. The predicates x = y and
x < y have the natural meaning, and x =L a is checks if the x-th letter of w is
equal to a. Let us recall that the quantifier rank of a formula is the maximal
number of nested quantifications in it.

An important property of FO, is that it has decidable emptiness, i.e. given a
formula ', one can decide if there is a word w such that ' holds for w. For finite
alphabets, this property is well-know [11], and for the infinite alphabet D it is
the consequence of the finite-alphabet case.

Having discussed the first-order logic on words, we are now ready to define
the first-order string-to-string interpretations.

Rules of the fight
functions no no no
lists no!
variables only booleans / positions
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First-Order Interpretations

Polyregular Model Checking 9

',  := 8x ' | 9x ' | ' ^  | ' _  | ¬'
| x = y | x < y | x =L a, where a 2 D

Fig. 3. First-order logic on words.

Definition 1. A first-order string-to-string interpretation consists of:

1. A finite set of character constants A ⇢fin D.
2. A finite set T of tags.
3. An arity function ar : T ! N.
4. An output function out : T ! A+ {1, . . . , ar(t)}.
5. A domain formula 't

dom(x1, . . . , xar(t)) for every tag t 2 T .
6. An order formula 't,t0

 (x1, . . . , xar(t), y1, . . . , yar(t0)) for every t, t0 2 T .

The order and domain formulas should only use constants from A.

The interpretation’s output for a word w 2 D
⇤ is obtained as follows:

1. Take the set P = {1, . . . , |w|} of the positions in w, and construct the set of
elements as the set T (P ) = (t : T )⇥ P ar(t) of all tags from T equipped with
position tuples of the appropriate arity.

2. Filter out the elements that do not satisfy the domain formula.
3. Sort the remaining elements according to the order formula. Typically, we

want the order formula to define a total order on the remaining elements of
T (P ) – if this is not the case, the interpretation returns an empty word.

4. Assign a letter to each element according to the output function: For an
element t(p1, . . . , pk), we look at of out(t): If it returns a 2 A the output
letter is a. If it returns i 2 {1, . . . , k}, we copy the output letter from the
pi-th position of the input.

out(printB) = b out(copy) = 1

'printB
dom (x) : x =L b 'copy

dom(x) : x 6=L b

' printB(x1) copy(x1)
printB(x2) x1  x2 x1 < x2

copy(x2) x1  x2 x1  x2

Fig. 4. The swapAsToBs interpretation.

For example, let us present a first-
order word-to-word interpretation for
the function swapAsToBs in Figure 4.
It has two tags printB and copy, both
of arity 1. The element printB(x) out-
puts the letter b and copy(x) outputs
the letter of x-th position of the in-
put word. The element printB(x) is
present in the output if x is labelled
with the letter b in the input, other-
wise the element copy(x) is present:
The tags are sorted by their positions,
with ties resolved in favour of printB.

Rules of the fight
tags finite set tags
arities ar : tags → N
domain first order formulas φt

dom
output letters out : tags → A+ N
output order first order formulas φt1,t2

≤
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For example, let us present a first-
order word-to-word interpretation for
the function swapAsToBs in Figure 4.
It has two tags printB and copy, both
of arity 1. The element printB(x) out-
puts the letter b and copy(x) outputs
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Anatomy of a For(program checker)

Program For-program FO-Int.

FO

FO+T

SMTLib2

MONA

Alt-Ergo

8 A. Lopez and R. Stefański

3 # "hello world" -> "olleh dlrow"
4 seen_space_top = False 1

5 # first we handle all words except of the final one
6 for i in input: 2

7 seen_space = False 3

8 if label(i) == ’ ’: 4

9 for j in reversed(input): 5

10 if j < i:
11 if label(j) == ’ ’:
12 seen_space = True
13 if not seen_space:
14 print(label(j)) 6

15 print(’ ’) 7

16

17 # then we handle the final word
18 for j in reversed(input):
19 if label(j) == ’ ’:
20 seen_space_top = True
21 if not seen_space_top:
22 print(label(j))

We disallow constructing intermediate word-values, there are no variables
of type Listn for any n, and it is not possible to define functions (other than
the main function). As a consequence, the for-loops can only iterate over the
positions of the input word as in 1 and 2 . The character at a given position
can be accessed using the keyword label, whether when testing it ( 5 ) or when
printing it in ( 6 ). As we are considering a restriction of for-programs, we only
allow comparing labels to constant characters (R. III). Finally, we only allow
introducing boolean variables at the top of the program ( 1 ) or at the beginning
of a for loop ( 3 ).

3.3 First-Order String-To-String Transductions

First-order string-to-string interpretations forms an other model that defines
functions D⇤

! D
⇤. It is based on the first-order logic on words (FO), the syntax

of which we recall in Figure 3. To evaluate such a formula ' on a word w 2 D
⇤

we perform the quantifications over the positions in w. The predicates x = y and
x < y have the natural meaning, and x =L a is checks if the x-th letter of w is
equal to a. Let us recall that the quantifier rank of a formula is the maximal
number of nested quantifications in it.

An important property of FO, is that it has decidable emptiness, i.e. given a
formula ', one can decide if there is a word w such that ' holds for w. For finite
alphabets, this property is well-know [11], and for the infinite alphabet D it is
the consequence of the finite-alphabet case.

Having discussed the first-order logic on words, we are now ready to define
the first-order string-to-string interpretations.
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',  := 8x ' | 9x ' | ' ^  | ' _  | ¬'
| x = y | x < y | x =L a, where a 2 D

Fig. 3. First-order logic on words.

Definition 1. A first-order string-to-string interpretation consists of:

1. A finite set of character constants A ⇢fin D.
2. A finite set T of tags.
3. An arity function ar : T ! N.
4. An output function out : T ! A+ {1, . . . , ar(t)}.
5. A domain formula 't

dom(x1, . . . , xar(t)) for every tag t 2 T .
6. An order formula 't,t0

 (x1, . . . , xar(t), y1, . . . , yar(t0)) for every t, t0 2 T .

The order and domain formulas should only use constants from A.

The interpretation’s output for a word w 2 D
⇤ is obtained as follows:

1. Take the set P = {1, . . . , |w|} of the positions in w, and construct the set of
elements as the set T (P ) = (t : T )⇥ P ar(t) of all tags from T equipped with
position tuples of the appropriate arity.

2. Filter out the elements that do not satisfy the domain formula.
3. Sort the remaining elements according to the order formula. Typically, we

want the order formula to define a total order on the remaining elements of
T (P ) – if this is not the case, the interpretation returns an empty word.

4. Assign a letter to each element according to the output function: For an
element t(p1, . . . , pk), we look at of out(t): If it returns a 2 A the output
letter is a. If it returns i 2 {1, . . . , k}, we copy the output letter from the
pi-th position of the input.

out(printB) = b out(copy) = 1

'printB
dom (x) : x =L b 'copy

dom(x) : x 6=L b

' printB(x1) copy(x1)
printB(x2) x1  x2 x1 < x2

copy(x2) x1  x2 x1  x2

Fig. 4. The swapAsToBs interpretation.

For example, let us present a first-
order word-to-word interpretation for
the function swapAsToBs in Figure 4.
It has two tags printB and copy, both
of arity 1. The element printB(x) out-
puts the letter b and copy(x) outputs
the letter of x-th position of the in-
put word. The element printB(x) is
present in the output if x is labelled
with the letter b in the input, other-
wise the element copy(x) is present:
The tags are sorted by their positions,
with ties resolved in favour of printB.
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First-Order Logic... with tags!
φ := ∃x : tag, φ | ∃x : pos, φ | ¬φ | φ1 ∧ φ2 | x =L a | x ≤ y | x = t

FO
f ∈ FO-I

FO+T

∀w, f(w) |= φ ⇐⇒ w |= f(φ)

f(∀xψ) := ∀tx∈tags ∀x1,...,xar(f)

(
dom(tx, x1, . . . , xar(f)) ⇒ f(ψ)

)
dom(t, x1, . . . , xar(t)) :=

∨
t′∈tags

(
t = t′ ∧ φt′

dom(x1, . . . , xar(t′))
)

f(x ≤ y) :=
∨

t1,t2∈tags

(
tx = t1 ∧ ty = t2 ∧ φt1,t2

≤ (x1, . . . , xar(t1), y1, . . . , yar(t2))
)

f(x =L a) :=
(∨

t∈tags∧out(t)=a t = tx
)
∨
(∨

t∈tags∧out(t) ̸∈A(t = tx ∧ xout(t) =L a)
)

Aliaume Lopez2025-06-13 [IRIF]

14/20



First-Order Logic... with tags!
φ := ∃x : tag, φ | ∃x : pos, φ | ¬φ | φ1 ∧ φ2 | x =L a | x ≤ y | x = t

FO
f ∈ FO-I

FO+T

∀w, f(w) |= φ ⇐⇒ w |= f(φ)

f(∀xψ) := ∀tx∈tags ∀x1,...,xar(f)

(
dom(tx, x1, . . . , xar(f)) ⇒ f(ψ)

)
dom(t, x1, . . . , xar(t)) :=

∨
t′∈tags

(
t = t′ ∧ φt′

dom(x1, . . . , xar(t′))
)

f(x ≤ y) :=
∨

t1,t2∈tags

(
tx = t1 ∧ ty = t2 ∧ φt1,t2

≤ (x1, . . . , xar(t1), y1, . . . , yar(t2))
)

f(x =L a) :=
(∨

t∈tags∧out(t)=a t = tx
)
∨
(∨

t∈tags∧out(t) ̸∈A(t = tx ∧ xout(t) =L a)
)

Aliaume Lopez2025-06-13 [IRIF]

14/20



First-Order Logic... with tags!
φ := ∃x : tag, φ | ∃x : pos, φ | ¬φ | φ1 ∧ φ2 | x =L a | x ≤ y | x = t

FO
f ∈ FO-I

FO+T

∀w, f(w) |= φ ⇐⇒ w |= f(φ)

f(∀xψ) := ∀tx∈tags ∀x1,...,xar(f)

(
dom(tx, x1, . . . , xar(f)) ⇒ f(ψ)

)
dom(t, x1, . . . , xar(t)) :=

∨
t′∈tags

(
t = t′ ∧ φt′

dom(x1, . . . , xar(t′))
)

f(x ≤ y) :=
∨

t1,t2∈tags

(
tx = t1 ∧ ty = t2 ∧ φt1,t2

≤ (x1, . . . , xar(t1), y1, . . . , yar(t2))
)

f(x =L a) :=
(∨

t∈tags∧out(t)=a t = tx
)
∨
(∨

t∈tags∧out(t) ̸∈A(t = tx ∧ xout(t) =L a)
)

Aliaume Lopez2025-06-13 [IRIF]

14/20
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Program For-program FO-Int.
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FO+T

SMTLib2

MONA

Alt-Ergo

8 A. Lopez and R. Stefański

3 # "hello world" -> "olleh dlrow"
4 seen_space_top = False 1

5 # first we handle all words except of the final one
6 for i in input: 2

7 seen_space = False 3

8 if label(i) == ’ ’: 4

9 for j in reversed(input): 5

10 if j < i:
11 if label(j) == ’ ’:
12 seen_space = True
13 if not seen_space:
14 print(label(j)) 6

15 print(’ ’) 7

16

17 # then we handle the final word
18 for j in reversed(input):
19 if label(j) == ’ ’:
20 seen_space_top = True
21 if not seen_space_top:
22 print(label(j))

We disallow constructing intermediate word-values, there are no variables
of type Listn for any n, and it is not possible to define functions (other than
the main function). As a consequence, the for-loops can only iterate over the
positions of the input word as in 1 and 2 . The character at a given position
can be accessed using the keyword label, whether when testing it ( 5 ) or when
printing it in ( 6 ). As we are considering a restriction of for-programs, we only
allow comparing labels to constant characters (R. III). Finally, we only allow
introducing boolean variables at the top of the program ( 1 ) or at the beginning
of a for loop ( 3 ).

3.3 First-Order String-To-String Transductions

First-order string-to-string interpretations forms an other model that defines
functions D⇤

! D
⇤. It is based on the first-order logic on words (FO), the syntax

of which we recall in Figure 3. To evaluate such a formula ' on a word w 2 D
⇤

we perform the quantifications over the positions in w. The predicates x = y and
x < y have the natural meaning, and x =L a is checks if the x-th letter of w is
equal to a. Let us recall that the quantifier rank of a formula is the maximal
number of nested quantifications in it.

An important property of FO, is that it has decidable emptiness, i.e. given a
formula ', one can decide if there is a word w such that ' holds for w. For finite
alphabets, this property is well-know [11], and for the infinite alphabet D it is
the consequence of the finite-alphabet case.

Having discussed the first-order logic on words, we are now ready to define
the first-order string-to-string interpretations.
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Fig. 3. First-order logic on words.

Definition 1. A first-order string-to-string interpretation consists of:

1. A finite set of character constants A ⇢fin D.
2. A finite set T of tags.
3. An arity function ar : T ! N.
4. An output function out : T ! A+ {1, . . . , ar(t)}.
5. A domain formula 't

dom(x1, . . . , xar(t)) for every tag t 2 T .
6. An order formula 't,t0

 (x1, . . . , xar(t), y1, . . . , yar(t0)) for every t, t0 2 T .

The order and domain formulas should only use constants from A.

The interpretation’s output for a word w 2 D
⇤ is obtained as follows:

1. Take the set P = {1, . . . , |w|} of the positions in w, and construct the set of
elements as the set T (P ) = (t : T )⇥ P ar(t) of all tags from T equipped with
position tuples of the appropriate arity.

2. Filter out the elements that do not satisfy the domain formula.
3. Sort the remaining elements according to the order formula. Typically, we

want the order formula to define a total order on the remaining elements of
T (P ) – if this is not the case, the interpretation returns an empty word.

4. Assign a letter to each element according to the output function: For an
element t(p1, . . . , pk), we look at of out(t): If it returns a 2 A the output
letter is a. If it returns i 2 {1, . . . , k}, we copy the output letter from the
pi-th position of the input.

out(printB) = b out(copy) = 1

'printB
dom (x) : x =L b 'copy

dom(x) : x 6=L b

' printB(x1) copy(x1)
printB(x2) x1  x2 x1 < x2

copy(x2) x1  x2 x1  x2

Fig. 4. The swapAsToBs interpretation.

For example, let us present a first-
order word-to-word interpretation for
the function swapAsToBs in Figure 4.
It has two tags printB and copy, both
of arity 1. The element printB(x) out-
puts the letter b and copy(x) outputs
the letter of x-th position of the in-
put word. The element printB(x) is
present in the output if x is labelled
with the letter b in the input, other-
wise the element copy(x) is present:
The tags are sorted by their positions,
with ties resolved in favour of printB.
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Calling solvers for help
MONA

Solves : WS1S/WS2S over words

tags w

Complete but slow

SMTLib2

Solves : First order theories

— DT : tags
— UF : w : N → A+⊥
— LIA : positions

Incomplete but fast

18 A. Lopez and R. Stefański

Table 1. Results for the transformations. Here FP is a for-program, S.FP is a simple
for-program, and FO-I is a first-order interpretation. The columns l.d., b.d. and q.r.

stand respectively for the loop depth, boolean depth and quantifier rank.

FP S.FP FO-I
filename size l.d. b.d. size l.d. b.d. size q.r.

identity.pr 3 1 0 2 2 0 1 0
reverse.pr 3 1 0 2 2 0 1 0
subwords_ab.pr 24 2 1 15 4 3 956 14
map_reverse.pr 36 2 1 18 4 1 285 5
prefixes.pr 6 2 0 5 3 0 2 0
get_last_word.pr 18 1 1 23 4 2 8553 15
get_first_word.pr 22 1 1 5 2 0 103 4
compress_as.pr 12 1 1 12 3 2 209 10
litteral_test.pr 29 1 1 129 3 12 3.2⇥ 104 82
bibtex.pr 110 2 1 802 6 29 13.7⇥ 106 136

These test offer only initial insight into the performance of our implementation,
so developing our implementation into an actual tool would require systematic
benchmarks and comparison with already existing tools.

Table 2. Verification of first-order Hoare triples over sample for-programs. We specify
the preconditions and postconditions as regular languages, writing Lab as a shorthand
for D⇤abD⇤, and similarly for Laa, Lba, etc. In the columns corresponding to the solvers,
a checkmark indicates a positive reply, a cross mark indicates a negative reply, and a
question mark indicates a timeout or a memory exhaustion. We indicate the size and
the quantifier rank (q.r.) of the first-order formulas that are fed to the solvers.

Name Pre. Post. q.r. size MONA CVC5 Z3

compress_as.pr Lab Lab 16 763 3 ? ?
reverse_add_hash.pr Lab Lba 9 380 ? 3 ?
get_last_word.pr D⇤a Laa 27 28274 ? ? 7
subwords_ab.pr Lab Lab 26 3276 ? ? ?
map_reverse.pr D⇤a aD⇤ 13 801 ? ? ?

Compilation to FO-formulas. Looking at Table 1, we observe that the generated
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Anatomy of a For(program checker)

Program For-program FO-Int.

FO

FO+T

SMTLib2

MONA

Alt-Ergo

8 A. Lopez and R. Stefański

3 # "hello world" -> "olleh dlrow"
4 seen_space_top = False 1

5 # first we handle all words except of the final one
6 for i in input: 2

7 seen_space = False 3

8 if label(i) == ’ ’: 4

9 for j in reversed(input): 5

10 if j < i:
11 if label(j) == ’ ’:
12 seen_space = True
13 if not seen_space:
14 print(label(j)) 6

15 print(’ ’) 7

16

17 # then we handle the final word
18 for j in reversed(input):
19 if label(j) == ’ ’:
20 seen_space_top = True
21 if not seen_space_top:
22 print(label(j))

We disallow constructing intermediate word-values, there are no variables
of type Listn for any n, and it is not possible to define functions (other than
the main function). As a consequence, the for-loops can only iterate over the
positions of the input word as in 1 and 2 . The character at a given position
can be accessed using the keyword label, whether when testing it ( 5 ) or when
printing it in ( 6 ). As we are considering a restriction of for-programs, we only
allow comparing labels to constant characters (R. III). Finally, we only allow
introducing boolean variables at the top of the program ( 1 ) or at the beginning
of a for loop ( 3 ).

3.3 First-Order String-To-String Transductions

First-order string-to-string interpretations forms an other model that defines
functions D⇤

! D
⇤. It is based on the first-order logic on words (FO), the syntax

of which we recall in Figure 3. To evaluate such a formula ' on a word w 2 D
⇤

we perform the quantifications over the positions in w. The predicates x = y and
x < y have the natural meaning, and x =L a is checks if the x-th letter of w is
equal to a. Let us recall that the quantifier rank of a formula is the maximal
number of nested quantifications in it.

An important property of FO, is that it has decidable emptiness, i.e. given a
formula ', one can decide if there is a word w such that ' holds for w. For finite
alphabets, this property is well-know [11], and for the infinite alphabet D it is
the consequence of the finite-alphabet case.

Having discussed the first-order logic on words, we are now ready to define
the first-order string-to-string interpretations.

Polyregular Model Checking 9

',  := 8x ' | 9x ' | ' ^  | ' _  | ¬'
| x = y | x < y | x =L a, where a 2 D

Fig. 3. First-order logic on words.

Definition 1. A first-order string-to-string interpretation consists of:

1. A finite set of character constants A ⇢fin D.
2. A finite set T of tags.
3. An arity function ar : T ! N.
4. An output function out : T ! A+ {1, . . . , ar(t)}.
5. A domain formula 't

dom(x1, . . . , xar(t)) for every tag t 2 T .
6. An order formula 't,t0

 (x1, . . . , xar(t), y1, . . . , yar(t0)) for every t, t0 2 T .

The order and domain formulas should only use constants from A.

The interpretation’s output for a word w 2 D
⇤ is obtained as follows:

1. Take the set P = {1, . . . , |w|} of the positions in w, and construct the set of
elements as the set T (P ) = (t : T )⇥ P ar(t) of all tags from T equipped with
position tuples of the appropriate arity.

2. Filter out the elements that do not satisfy the domain formula.
3. Sort the remaining elements according to the order formula. Typically, we

want the order formula to define a total order on the remaining elements of
T (P ) – if this is not the case, the interpretation returns an empty word.

4. Assign a letter to each element according to the output function: For an
element t(p1, . . . , pk), we look at of out(t): If it returns a 2 A the output
letter is a. If it returns i 2 {1, . . . , k}, we copy the output letter from the
pi-th position of the input.

out(printB) = b out(copy) = 1

'printB
dom (x) : x =L b 'copy

dom(x) : x 6=L b

' printB(x1) copy(x1)
printB(x2) x1  x2 x1 < x2

copy(x2) x1  x2 x1  x2

Fig. 4. The swapAsToBs interpretation.

For example, let us present a first-
order word-to-word interpretation for
the function swapAsToBs in Figure 4.
It has two tags printB and copy, both
of arity 1. The element printB(x) out-
puts the letter b and copy(x) outputs
the letter of x-th position of the in-
put word. The element printB(x) is
present in the output if x is labelled
with the letter b in the input, other-
wise the element copy(x) is present:
The tags are sorted by their positions,
with ties resolved in favour of printB.
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Compiling to First Order
8 A. Lopez and R. Stefański

3 # "hello world" -> "olleh dlrow"
4 seen_space_top = False 1

5 # first we handle all words except of the final one
6 for i in input: 2

7 seen_space = False 3

8 if label(i) == ’ ’: 4

9 for j in reversed(input): 5

10 if j < i:
11 if label(j) == ’ ’:
12 seen_space = True
13 if not seen_space:
14 print(label(j)) 6

15 print(’ ’) 7

16

17 # then we handle the final word
18 for j in reversed(input):
19 if label(j) == ’ ’:
20 seen_space_top = True
21 if not seen_space_top:
22 print(label(j))

We disallow constructing intermediate word-values, there are no variables
of type Listn for any n, and it is not possible to define functions (other than
the main function). As a consequence, the for-loops can only iterate over the
positions of the input word as in 1 and 2 . The character at a given position
can be accessed using the keyword label, whether when testing it ( 5 ) or when
printing it in ( 6 ). As we are considering a restriction of for-programs, we only
allow comparing labels to constant characters (R. III). Finally, we only allow
introducing boolean variables at the top of the program ( 1 ) or at the beginning
of a for loop ( 3 ).

3.3 First-Order String-To-String Transductions

First-order string-to-string interpretations forms an other model that defines
functions D⇤

! D
⇤. It is based on the first-order logic on words (FO), the syntax

of which we recall in Figure 3. To evaluate such a formula ' on a word w 2 D
⇤

we perform the quantifications over the positions in w. The predicates x = y and
x < y have the natural meaning, and x =L a is checks if the x-th letter of w is
equal to a. Let us recall that the quantifier rank of a formula is the maximal
number of nested quantifications in it.

An important property of FO, is that it has decidable emptiness, i.e. given a
formula ', one can decide if there is a word w such that ' holds for w. For finite
alphabets, this property is well-know [11], and for the infinite alphabet D it is
the consequence of the finite-alphabet case.

Having discussed the first-order logic on words, we are now ready to define
the first-order string-to-string interpretations.

Tags : tags = {t1, t2, t3}
Arities : ar(t1) = 2, ar(t2) = 1, ar(t3) = 1

Out : out(t1) = j, out(t2) = space, out(t3) = j

Order : Lexicographic based on positions (QF)
Domain : ... difficult part !

values of the boolean variables ?

Program formulas
— FO + input (pos,bool) / output (bool)
— Can be composed easily
— Can implement if-then-else
— Can implement loops

One can write a program formula to compute the boo-
lean variables at a given program position.
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FromHigh to Low
New operator : generator expressions.

— gen(s)
— Can be used in place of a list / boolean
— Captures list variables but not boolean variables
— Simulate function calls

Example code :
for (i,x) in enumerate(gen( expr )) ...

Easy rewriting steps :
1. Remove literals
2. Remove functions
3. Remove boolean generators
4. Remove let expressions
5. Push boolean introductions upwards

Print all but first, program “s”

b = False
for (i,x) in enumerate(u):

if b:
yield x

else:
b = True

What are the following programs doing?

for (i,x) in reverse(enumerate(s)):
yield x

for (i,x) in enumerate(s):
yield x
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Forward Loop Elimination
for (i,x) in enumerate(s):

for (j,y) in enumerate(s):
if i == j:

yield x

Idea : substitute the body of the loop in s.
s[yielde 7→ ...].

Problem : We lost the index variable i !

Solution :
— i can only be used in tests
— i can only be tested against positions of s
— we can replace i = j by an order formula

b1 = False
for (i1,x1) in enumerate(s):

if b1:
b2 = False
for (i2,x2) in enumerate(s):

if b2:
if i1 = i2:

yield x1
else:

b2 = True
else:

b1 = True
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Backward Loop Elimination
for (i,x) in reverse(enumerate(s)):

yield x

Problem : reverse a non reversible computation!

Solution :
— Compute a superset of the reachable yields in the

reversed order
— For every yield, check that it would be reachable
— If so, perform the rest of the computation

Remark : this is the proof that polyregular functions are
closed under composition.

for (i1, x1) in reversed(enumerate(u)):
for (i2, x2) in enumerate(u):

b2 = False
if b2:

if i1 = i2:
yield x1

else:
b2 = True
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In the end...

Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

ArtifactPolyregular Model Checking

Aliaume Lopez1[0000�0002�4205�327X]? and Rafał
Stefański1[0000�0002�8439�4056]??

University of Warsaw

Abstract. We introduce a high-level language with Python-like syntax
for string-to-string, polyregular, first-order definable transductions. This
language features function calls, boolean variables, and nested for-loops.
We devise and implement a complete decision procedure for the verification
of such programs against a first-order specification. The decision procedure
reduces the verification problem to the decidable first-order theory of
finite words (extensively studied in automata theory), which we discharge
using either complete tools specific to this theory (MONA), or to general-
purpose SMT solvers (Z3, CVC5).

This document uses knowledge: notion points to its definition.

1 Introduction

String manipulating programs of low complexity are ubiquitous in modern soft-
ware. They are often used to transform data and do not perform complex compu-
tations themselves. In this paper, we are interested in verifying Hoare triples for
such string manipulating programs, i.e. specifications of the form {P} code {Q},
where P and Q are pre- and post-conditions, meaning that whenever the input
satisfies property P , the output of the program satisfies property Q.

Regularity preserving programs. One particularly interesting class of specifications
in the case of string-to-string functions are regular languages, which can be
efficiently verified using automata-based techniques. We say that a function f
is regularity preserving if it preserves regular languages under pre-image, i.e. if
f�1(L) is regular for all regular languages L. For regularity preserving functions,
the verification of a Hoare triple {LP } f {LQ} can be reduced to the nonemptiness
problem of the language LP \ f�1(LQ), where LP and LQ are regular languages.
This is a well-studied problem in the literature, and is at the core of several
more involved techniques [2,13,18]. The key challenge of this approach is that
there exist uncomputable regularity preserving functions, so such approaches will
only work on classes of functions for which pre-images of regular languages are
(relatively) efficiently computable. Usually, these classes come from generalisation
of automata models to functions, also known as string-to-string transducers.
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Future work :
— Comparison with other models
— Better interface with solvers
— Composable checks
— Monadic second order logic

And more :
— Haskell implementation + webapp
— Nix / Docker / reproducible builds
— Symbolic alphabets
— Some optimisations
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