Well-Quasi-Orders

AND

LOGIC ON GRAPHS

Aliaume Lopez University of Warsaw

Les Houches FMT'25, 2025-05-29

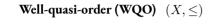
https://www.irif.fr/~alopez/

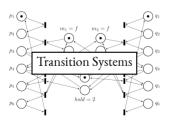
Well-Quasi-Orders 101

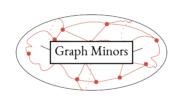
Well-quasi-order (WQO) (X, \leq)

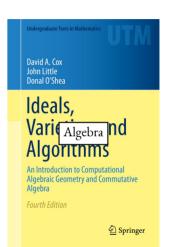
$$x_0 \quad x_1 \quad x_2 \quad \dots \quad x_i \quad \dots \quad x_j \quad \dots$$

Well-Quasi-Orders 101

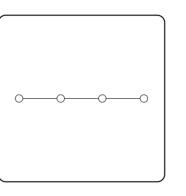








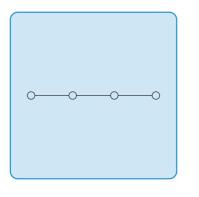
YES

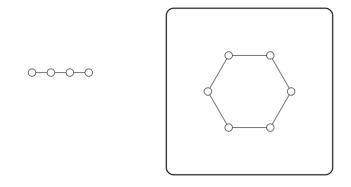


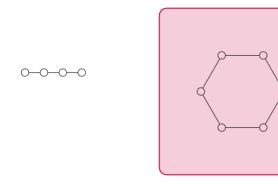
NO

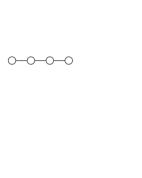
NO

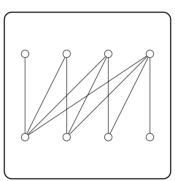
YES



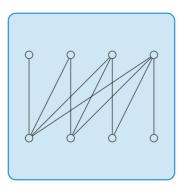






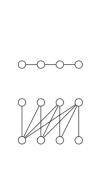


YES



NO

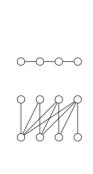
8 0 1

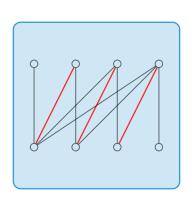


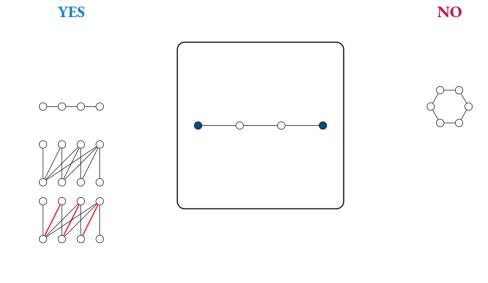
YES

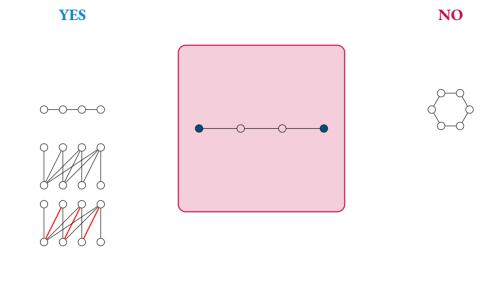


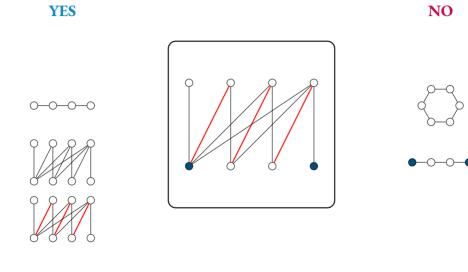
NO

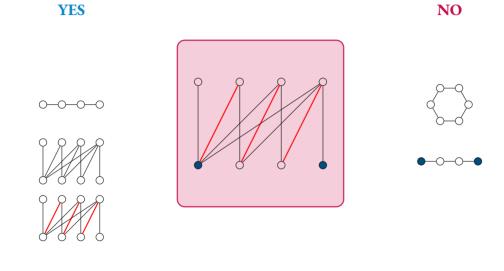


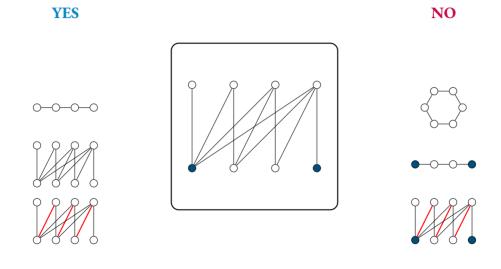


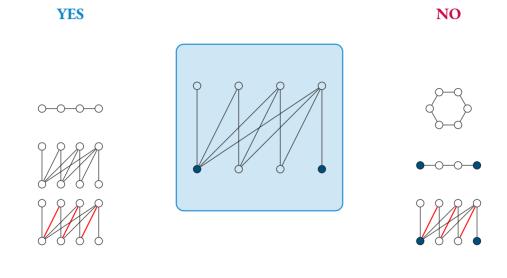












Theorems [Ding'92, folklore]

- Bounded tree-depth ⇒ WQO
- Bounded shrub-depth \implies WQO
- m-partite cograph \implies WQO

Theorems [Ding'92, folklore]

- Bounded tree-depth \implies WQO
- Bounded shrub-depth ⇒ WQO
- Bounded shrub-depth \implies WQO m-partite cograph \implies WQO

Remark [folklore] "Every" order (X, \leq) is represented as a class of finite graphs $(\mathcal{C}, \subseteq_i)$. \rightsquigarrow Not easy to characterise WQOs inside

Theorems [Ding'92, folklore]

- Bounded tree-depth \implies WQO
- Bounded shrub-depth ⇒ WQO
- m-partite cograph \implies WQO

Remark [folklore] "Every" order (X, \leq) is represented as a class of finite graphs $(\mathcal{C}, \subseteq_i)$. \rightsquigarrow Not easy to characterise WQOs inside

For colored paths (i.e. finite words), WQO is decidable

- for regular languages [Atminas, Lozin, Moshkov, '17]
- for languages recognized by *amalgamation systems* (CFG, VASS, etc) and infixes of *morphic words* [Lhote, L, Schütze, arxiv 2025]

Theorems [Ding'92, folklore] — Bounded tree-depth ⇒ WQO — Bounded shrub-depth ⇒ WQO — m-partite cograph ⇒ WQO Instead: consider hereditary classes

Remark [folklore] "Every" order (X, \leq) is represented as a class of finite graphs $(\mathcal{C}, \subseteq_i)$. \leadsto Not easy to characterise WQOs inside

For **colored paths** (i.e. finite w

colored paths (i.e. finite we for regular languages [At

- for languages recognized by amalgamation systems (CFG, VASS, etc) and infixes of morphic words

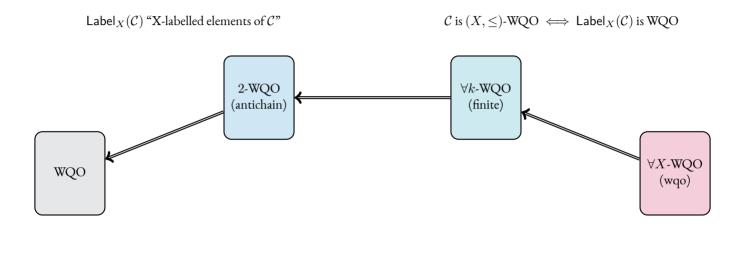
and freely colour them

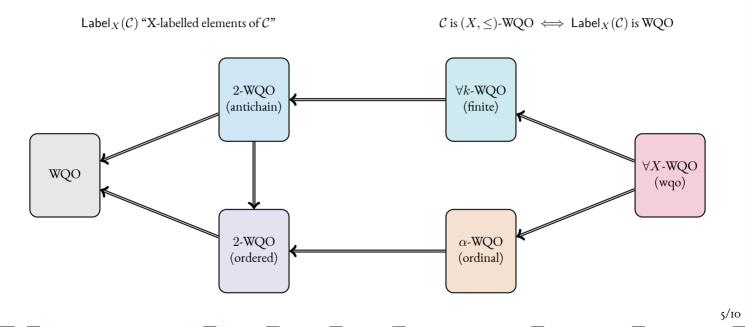
[Lhote, L, Schütze, arxiv 2025]

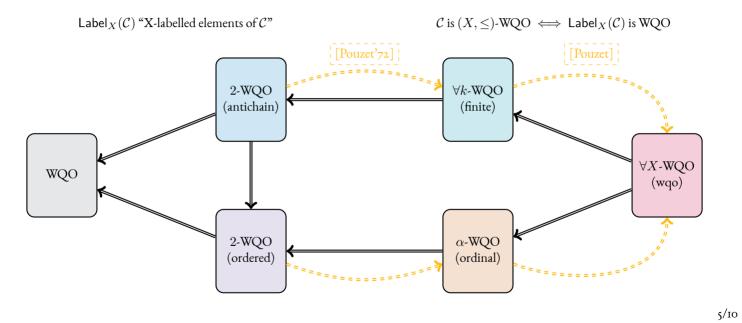
 $\mathsf{Label}_X(\mathcal{C})$ "X-labelled elements of \mathcal{C} "

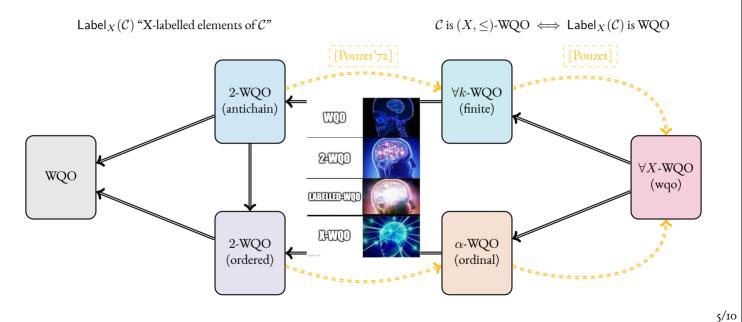
 \mathcal{C} is (X, \leq) -WQO \iff Label $_X(\mathcal{C})$ is WQO

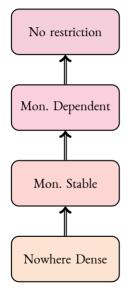
5/10

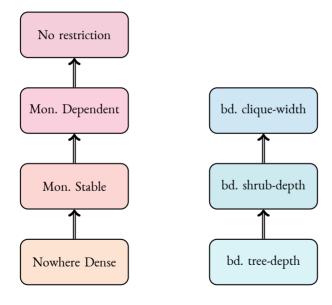


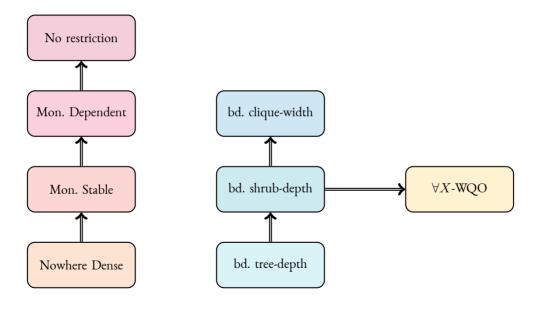


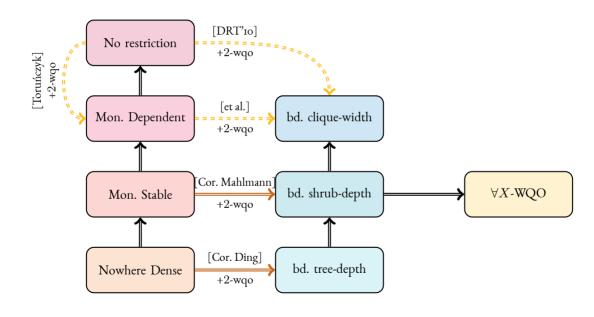


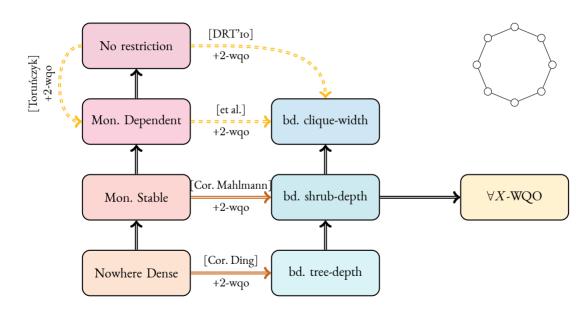












Finite Set :
$$Q = \{a, b, c\}$$

$$\mathsf{Relabels} : \mathcal{F} = \{\mathsf{id}_Q, \rho, \rho^2\}$$

$$\rho \colon \begin{cases} a & \mapsto b \\ b & \mapsto c \\ c & \mapsto c \end{cases}$$

Finite Set :
$$Q = \{a, b, c\}$$

$$\mathsf{Relabels}: \mathcal{F} = \{\mathsf{id}_Q, \rho, \rho^2\}$$

$$\rho \colon \begin{cases} a & \mapsto b \\ b & \mapsto c \\ c & \mapsto c \end{cases}$$

Finite Set :
$$Q = \{a, b, c\}$$

Relabels :
$$\mathcal{F} = \{ \mathrm{id}_Q, \rho, \rho^2 \}$$

$$\rho \colon \begin{cases} a & \mapsto b \\ b & \mapsto c \\ c & \mapsto c \end{cases}$$

Connect : ('a', 'b') Relabel using ρ

Finite Set : $Q = \{a, b, c\}$

Relabels : $\mathcal{F} = \{ \mathrm{id}_Q, \rho, \rho^2 \}$

$$\rho \colon \begin{cases} a & \mapsto b \\ b & \mapsto c \\ c & \mapsto c \end{cases}$$

Connect : ('a', 'b'), ('a', 'c') Relabel using ρ

Finite Set : $Q = \{a, b, c\}$

 $\mathsf{Relabels}: \mathcal{F} = \{\mathsf{id}_Q, \rho, \rho^2\}$

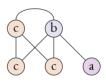
$$\rho \colon \begin{cases} a & \mapsto b \\ b & \mapsto c \\ c & \mapsto c \end{cases}$$

Connect : ('a', 'b') Relabel using ρ

Finite Set : $Q = \{a, b, c\}$

Relabels : $\mathcal{F} = \{ \mathrm{id}_Q, \rho, \rho^2 \}$

$$\rho \colon \begin{cases} a & \mapsto b \\ b & \mapsto c \\ c & \mapsto c \end{cases}$$

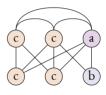


Connect : ('a', 'b'), ('a', 'c') Relabel using ρ

Finite Set : $Q = \{a, b, c\}$

 $\mathsf{Relabels}: \mathcal{F} = \{\mathsf{id}_Q, \rho, \rho^2\}$

$$\rho \colon \begin{cases} a & \mapsto b \\ b & \mapsto c \\ c & \mapsto c \end{cases}$$

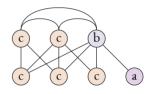


Connect : ('a', 'b') Relabel using ρ

Finite Set : $Q = \{a, b, c\}$

 $\mathsf{Relabels}: \mathcal{F} = \{\mathsf{id}_Q, \rho, \rho^2\}$

$$\rho \colon \begin{cases} a & \mapsto b \\ b & \mapsto c \\ c & \mapsto c \end{cases}$$

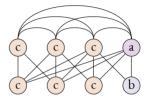


Connect : ('a', 'b'), ('a', 'c')
Relabel using ρ

Finite Set : $Q = \{a, b, c\}$

 $\operatorname{Relabels}: \mathcal{F} = \{\operatorname{id}_Q, \rho, \rho^2\}$

$$\rho \colon \begin{cases} a & \mapsto b \\ b & \mapsto c \\ c & \mapsto c \end{cases}$$

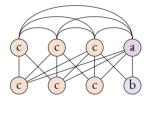


Connect : ('a', 'b') Relabel using *ρ*

Finite Set : $Q = \{a, b, c\}$

 $\mathsf{Relabels}: \mathcal{F} = \{\mathsf{id}_Q, \rho, \rho^2\}$

$$\rho \colon \begin{cases} a & \mapsto b \\ b & \mapsto c \\ c & \mapsto c \end{cases}$$



Connect : ('a', 'b')

lelabel using ρ

Theorem [DRT'10] One can decide whether $Relab(\mathcal{F})$ is 2-wqo.

2-wqo $\iff \forall X$ -WQO holds on these classes.

Finite Set :
$$Q = \{a, b, c\}$$

Relabels:
$$\mathcal{F} = \{ \mathrm{id}_Q, \rho, \rho^2 \}$$

$$\rho\colon \begin{cases} a \mapsto b \\ b \mapsto c \\ c \mapsto c \end{cases} \text{ this is a theorem on semigroups not } \begin{matrix} c \\ c \end{matrix} \text{ connect : ('a', 'b')} \\ \begin{matrix} languages. \\ languages. \end{matrix} \end{bmatrix} \text{ Connect : ('a', 'b')} \\ \begin{matrix} Rerab(\mathcal{F}) \text{ is } 2\text{-wqo.} \end{matrix}$$

2-wqo $\iff \forall X$ -WQO holds on these classes.

Finite monoid: M

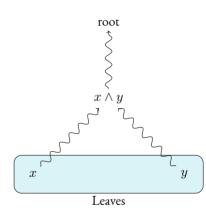
Finite monoid: M

Accepting condition : $P \subseteq M^3$

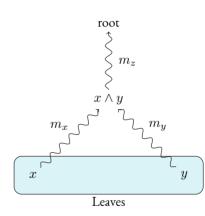
root

Leaves y

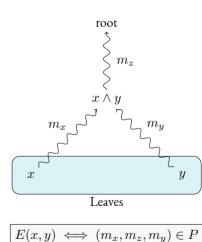
Finite $\mathbf{monoid}: M$



Finite monoid: M



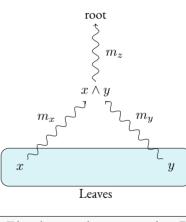
Finite $\mathbf{monoid}: M$



Finite **monoid** : M

Accepting condition : $P \subseteq M^3$

Theorem (new) Given M, P, one can decide if Relabel(M, P) is $\forall k$ -WQO. For these classes f(|M|)-WQO $\iff \forall k$ -WQO $\iff \forall X$ -WQO.



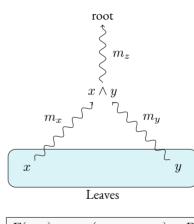
 $E(x,y) \iff (m_x, m_z, m_y) \in P$

Finite **monoid** : M

Accepting condition : $P \subseteq M^3$

Theorem (new) Given M, P, one can decide if Relabel(M, P) is $\forall k$ -WQO. For these classes f(|M|)-WQO $\iff \forall k$ -WQO $\iff \forall X$ -WQO.

Corollary For classes bounded clique-width $\forall k$ -WQO $\iff \forall X$ -WQO.



Finite **monoid** : M

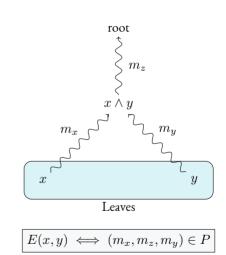
Accepting condition : $P \subseteq M^3$

Theorem (new) Given M, P, one can decide if Relabel(M, P) is $\forall k$ -WQO. For these classes f(|M|)-WQO $\iff \forall k$ -WQO $\iff \forall X$ -WQO.

Corollary For classes bounded clique-width $\forall k$ -WQO $\iff \forall X$ -WQO.

Bonus

- reduces to classes of bounded linear clique width
- existential transductions of finite paths



Part 1 : Order tree-decompositions s.t. $I: \mathsf{Trees} \to \mathsf{Graphs}$ is *order preserving* "product preserving" tree embeddings

Part 2 : Order tree-decompositions using a WQO.

usual tree embeddings (Kruskal)

Goal do (1) and (2) simultaneously.

Part 1 : Order tree-decompositions s.t. $I: \mathsf{Trees} \to \mathsf{Graphs}$ is *order preserving* "product preserving" tree embeddings

Part 2: Order tree-decompositions using a WQO.

usual tree embeddings (Kruskal)

Goal do (1) and (2) simultaneously.

Forward Ramseyan Splits [Colcombet'07]

Gap Embedding Relation
[Dershowitz and Tzameret'03]

Both label nodes with elements from $\{1,...,n\}$

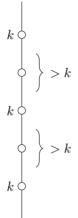
Part 1: Order tree-decompositions s.t. $I \colon \mathsf{Trees} \to \mathsf{Graphs} \ \mathsf{is} \ \mathit{order preserving}$

"product preserving" tree embeddings

Part 2: Order tree-decompositions using a WQO.

usual tree embeddings (Kruskal)

Goal do (1) and (2) simultaneously.



Forward Ramseyan Splits [Colcombet'07]

Gap Embedding Relation [Dershowitz and Tzameret'03]

Both label nodes with elements from $\{1, ..., n\}$

Forward Ramseyan Splits [Colcombet'07]

Gap Embedding Relation [Dershowitz and Tzameret'03]

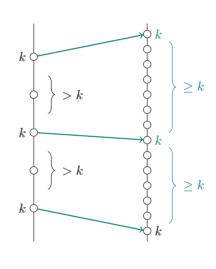
Both label nodes with elements from $\{1,...,n\}$

Part 1: Order tree-decompositions s.t. *I*: Trees → Graphs is *order preserving* "product preserving" tree embeddings

Part 2 : Order tree-decompositions using a WQO.

usual tree embeddings (Kruskal)

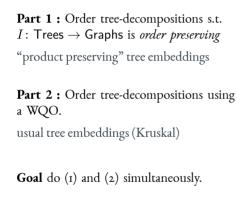
Goal do (1) and (2) simultaneously.

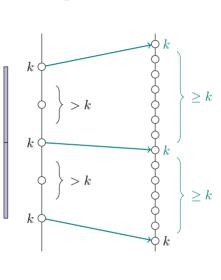


Forward Ramseyan Splits [Colcombet'07]

Gap Embedding Relation [Dershowitz and Tzameret'03]

Both label nodes with elements from $\{1,...,n\}$





Forward Ramseyan Splits [Colcombet'07]

Gap Embedding Relation [Dershowitz and Tzameret'03]

Both label nodes with elements from $\{1, ..., n\}$

 e_1

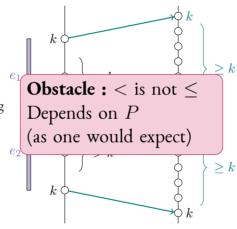
 e_2

Part 1: Order tree-decompositions s.t. $I \colon \mathsf{Trees} \to \mathsf{Graphs}$ is order preserving

"product preserving" tree embeddings

Part 2: Order tree-decompositions using a WQO. usual tree embeddings (Kruskal)

Goal do (1) and (2) simultaneously.



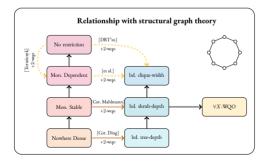
Forward Ramseyan Splits [Colcombet'07]

Gap Embedding Relation [Dershowitz and Tzameret'03]

Both label nodes with elements from $\{1, ..., n\}$

$$e_1e_2=e_1$$

Labelling Graphs Labels (C) 'X labelled dements of C' C is (X, S) WQO (michain) VX.WQO (michain) (michain)



What's next?

Theorem Given M, P, one can decide if Relabel(M, P) is $\forall k$ -WQO. For these classes f(|M|)-WQO $\iff \forall k$ -WQO.

2**-WQO**:

- 2-WQO (antichain) $\implies \forall k$ -WQO
- 2-WQO (order) $\implies \forall k$ -WQO
- Relationship to monadically dependent classes
- "Successor-free graphs"

WQO:

- Decide WQO for relabel functions
- Decide WQO given excluded patterns